Schéma explicatif de la FFT pour une suite de 2^3=8 valeurs, et donc de 3 étages
\documentclass[border=10pt]{standalone}\usepackage{tikz,ifthen}\newcounter{ym}\newcounter{yp}\newcounter{ai}\newcounter{wi}\definecolor{myblue}{RGB}{67,67,167}\definecolor{myred}{RGB}{167,67,67}\usetikzlibrary {arrows.meta}\begin{document}\tikzstyle{n}= [circle, fill, minimum size=4pt,inner sep=0pt, outer sep=0pt]\tikzstyle{mul} = [circle,draw,inner sep=-1pt]\begin{tikzpicture}[>=Latex,thick]\foreach \y in {0,...,7}\coordinate(N-0-\y) at (0,-\y);\node[left] at (N-0-0) {$a_0$};\node[left] at (N-0-1) {$a_4$};\node[left] at (N-0-2) {$a_2$};\node[left] at (N-0-3) {$a_6$};\node[left] at (N-0-4) {$a_1$};\node[left] at (N-0-5) {$a_5$};\node[left] at (N-0-6) {$a_3$};\node[left] at (N-0-7) {$a_7$};\foreach \y in {0,...,7}{\ifodd\y\node[draw,anchor=east](N-1-\y) at (2,-\y) {$\omega_{2}^0$};\else\coordinate(N-1-\y) at (2,-\y);\fi\draw[{Circle[]}->] (N-0-\y.east)--(N-1-\y.west);}\foreach \y in {0,...,7}{\ifodd\y